english version


Inférence et Comportements Visuels

Toutes les publications inVibe


  • Conti F. et Van Gorder R.A. (2019). The role of network structure and time delay in a metapopulation Wilson--Cowan model. Journal of Theoretical Biology, 477: 1-13.

  • Goffart L. (2019). Kinematics and the neurophysiological study of visually-guided eye movements. Progress in Brain Research, 249: 375-384.

  • Rahmouni S. et Madelain L. (2019). Inter-individual variability and consistency of saccade adaptation in oblique saccades: Amplitude increase and decrease in the horizontal or vertical saccade component. Vision Research, 160: 82-98.

  • Szinte M., Puntiroli M., et Deubel H. (2019). The spread of presaccadic attention depends on the spatial configuration of the visual scene. Scientific Reports, 9.

  • Vullings C., Harwood M.R., et Madelain L. (2019). Reinforcement reduces the size–latency phenomenon: A cost–benefit evaluation of saccade triggering. Journal of Vision, 19: 16.

  • Vullings C. et Madelain L. (2019). Discriminative control of saccade latencies. Journal of Vision, 19: 16.


  • Bourrelly C., Quinet J., et Goffart L. (2018). Pursuit disorder and saccade dysmetria after caudal fastigial inactivation in the monkey. Journal of Neurophysiology, 120: 1640-1654.

  • Bourrelly C., Quinet J., et Goffart L. (2018). The caudal fastigial nucleus and the steering of saccades toward a moving visual target. Journal of Neurophysiology, 120: 421-438.

  • Damasse J.-B., Perrinet L.U., Madelain L., et Montagnini A. (2018). Reinforcement effects in anticipatory smooth eye movements. Journal of Vision, 18: 14.

  • Dupeyroux J., Boutin V., Serres J.R., Perrinet L.U., et Viollet S. (2018). M² APix: A Bio-Inspired Auto-Adaptive Visual Sensor for Robust Ground Height Estimation. 2018 IEEE International Symposium on Circuits and Systems (ISCAS), 1-4.

  • Freedman D.J. et Ibos G. (2018). An Integrative Framework for Sensory, Motor, and Cognitive Functions of the Posterior Parietal Cortex. Neuron, 97: 1219-1234.
  • Goffart L. (2018). De la représentation cérébrale spatio-temporellement distribuée à la capture ici et maintenant d’un objet visuel en mouvement. L’avenir de la complexité et du désordre, 267-294.

  • Goffart L., Bourrelly C., et Quinton J.-C. (2018). Neurophysiology of visually guided eye movements: critical review and alternative viewpoint. Journal of Neurophysiology, 120: 3234-3245.
  • Quinton J.-C. et Goffart L. (2018). A unified dynamic neural field model of goal directed eye movements. Connection Science, 30: 20-52.

  • Vacher J., Meso A.I., Perrinet L.U., et Peyré G. (2018). Bayesian Modeling of Motion Perception Using Dynamical Stochastic Textures. Neural Computation, 1-38.


  • Gekas N., Meso A.I., Masson G.S., et Mamassian P. (2017). A Normalization Mechanism for Estimating Visual Motion across Speeds and Scales. Current Biology, 27: 1514-1520.e3.

  • Goffart L. (2017). Saccadic Eye Movements: Basic Neural Processes☆. Reference Module in Neuroscience and Biobehavioral Psychology.

  • Goffart L. (2017). Parallel and continuous visuomotor processing of simultaneously moving targets. Journal of Vision, 17: 901.

  • Goffart L., Bourrelly C., et Quinet J. (2017). Synchronizing the tracking eye movements with the motion of a visual target: Basic neural processes. Progress in Brain Research, 236: 243-268.

  • Goffart L., Cecala A.L., et Gandhi N.J. (2017). The superior colliculus and the steering of saccades toward a moving visual target. Journal of Neurophysiology, 118: 2890-2901.

  • Ibos G. et Freedman D.J. (2017). Sequential sensory and decision processing in posterior parietal cortex. eLife, 6.

  • Khoei M.A., Masson G.S., et Perrinet L.U. (2017). The Flash-Lag Effect as a Motion-Based Predictive Shift. PLOS Computational Biology, 13: e1005068.

  • Krauzlis R.J., Goffart L., et Hafed Z.M. (2017). Neuronal control of fixation and fixational eye movements. Philosophical Transactions of the Royal Society B: Biological Sciences, 372: 20160205.

  • Medathati N.V.K., Rankin J., Meso A.I., Kornprobst P., et Masson G.S. (2017). Recurrent network dynamics reconciles visual motion segmentation and integration. Scientific Reports, 7.

  • Vidal M. (2017). Hearing flashes and seeing beeps: Timing audiovisual events. PLOS ONE, 12: e0172028.


  • Bourrelly C., Quinet J., Cavanagh P., et Goffart L. (2016). Learning the trajectory of a moving visual target and evolution of its tracking in the monkey. Journal of Neurophysiology, 116: 2739-2751.

  • Chancel M., Blanchard C., Guerraz M., Montagnini A., et Kavounoudias A. (2016). Optimal visuotactile integration for velocity discrimination of self-hand movements. Journal of Neurophysiology, 116: 1522-1535.

  • Ego C., Bonhomme L., Orban de Xivry J.-J., Da Fonseca D., Lefèvre P., Masson G.S., et Deruelle C. (2016). Behavioral characterization of prediction and internal models in adolescents with autistic spectrum disorders. Neuropsychologia, 91: 335-345.

  • Kremkow J., Perrinet L.U., Monier C., Alonso J.-M., Aertsen A., Frégnac Y., et Masson G.S. (2016). Push-Pull Receptive Field Organization and Synaptic Depression: Mechanisms for Reliably Encoding Naturalistic Stimuli in V1. Frontiers in Neural Circuits, 10.

  • Landelle C., Montagnini A., Madelain L., et Danion F. (2016). Eye tracking a self-moved target with complex hand-target dynamics. Journal of Neurophysiology, 116: 1859-1870.

  • Medathati N.V.K., Neumann H., Masson G.S., et Kornprobst P. (2016). Bio-inspired computer vision: Towards a synergistic approach of artificial and biological vision. Computer Vision and Image Understanding, 150: 1-30.

  • Meso A.I., Montagnini A., Bell J., et Masson G.S. (2016). Looking for symmetry: fixational eye movements are biased by image mirror symmetry. Journal of Neurophysiology, 116: 1250-1260.

  • Meso A.I., Rankin J., Faugeras O., Kornprobst P., et Masson G.S. (2016). The relative contribution of noise and adaptation to competition during tri-stable motion perception. Journal of Vision, 16: 1-24.

  • Servant M., White C., Montagnini A., et Burle B. (2016). Linking Theoretical Decision-making Mechanisms in the Simon Task with Electrophysiological Data: A Model-based Neuroscience Study in Humans. Journal of Cognitive Neuroscience, 28: 1501-1521.

  • Spotorno S., Masson G.S., et Montagnini A. (2016). Fixational saccades during grating detection and discrimination. Vision Research, 118: 105-118.

  • Taouali W., Benvenuti G., Wallisch P., Chavane F., et Perrinet L.U. (2016). Testing the odds of inherent vs. observed overdispersion in neural spike counts. Journal of Neurophysiology, 115: 434-444.


  • Cristóbal G., Perrinet L.U., et Keil M.S. (2015). Biologically Inspired Computer Vision: Fundamentals and Applications. Biologically Inspired Computer Vision, 1-10.

  • Montagnini A., Perrinet L.U., et Masson G.S. (2015). Visual Motion Processing and Human Tracking Behavior. Biologically Inspired Computer Vision, 267-294.

  • Perrinet L.U. et Bednar J.A. (2015). Edge co-occurrences can account for rapid categorization of natural versus animal images. Scientific Reports, 5: 11400.

  • Perrinet L.U. (2015). Sparse Models for Computer Vision. Biologically Inspired Computer Vision, 319-346.

  • Quinet J. et Goffart L. (2015). Does the Brain Extrapolate the Position of a Transient Moving Target? Journal of Neuroscience, 35: 11780-11790.

  • Quinet J. et Goffart L. (2015). Cerebellar control of saccade dynamics: contribution of the fastigial oculomotor region. Journal of Neurophysiology, 113: 3323-3336.

  • Servant M., White C., Montagnini A., et Burle B. (2015). Using Covert Response Activation to Test Latent Assumptions of Formal Decision-Making Models in Humans. Journal of Neuroscience, 35: 10371-10385.

  • Taouali W., Goffart L., Alexandre F., et Rougier N.P. (2015). A parsimonious computational model of visual target position encoding in the superior colliculus. Biological Cybernetics, 109: 549-559.
  • Vacher J., Meso A., Perrinet L., et Peyre G. (2015). Biologically Inspired Dynamic Textures for Probing Motion Perception. Advances in Neural Information Processing Systems, 28: 1918 - 1926.


  • Meso A.I. et Masson G.S. (2014). Dynamic resolution of ambiguity during tri-stable motion perception. Vision Research, 107C: 113-123.

  • Perrinet L.U., Adams R.A., et Friston K.J. (2014). Active inference, eye movements and oculomotor delays. Biological Cybernetics, 108: 777 - 801.

  • Rankin J., Meso A.I., Masson G.S., Faugeras O., et Kornprobst P. (2014). Bifurcation study of a neural field competition model with an application to perceptual switching in motion integration. Journal of computational neuroscience, 193-213.

  • Servant M., Montagnini A., et Burle B. (2014). Conflict tasks and the diffusion framework: Insight in model constraints based on psychological laws. Cognitive Psychology, 72: 162-195.


  • Bogadhi A.R., Montagnini A., et Masson G.S. (2013). Dynamic interaction between retinal and extraretinal signals in motion integration for smooth pursuit. Journal of Vision, 13: 5-5.

0 | 50

CNRS logo université Aix Marseille logo | plan du site | mentions légales | contact | admin | intranet | intcloud |